Maximum GCD

TimeLimit:1000MS  MemoryLimit:256MB
64-bit integer IO format:%I64d
未提交 | 登录后收藏
Problem Description

Let's consider all integers in the range from 1 to n (inclusive).


Among all pairs of distinct integers in this range, find the maximum possible greatest common divisor of integers in pair. Formally, find the maximum value of gcd(a,b), where 1≤a<b≤n.


The greatest common divisor, gcd(a,b), of two positive integers a and b is the biggest integer that is a divisor of both a and b.


Input

The first line contains a single integer t (1≤t≤100)  — the number of test cases. The description of the test cases follows.


The only line of each test case contains a single integer n (2≤n≤10^6).


Output

For each test case, output the maximum value of gcd(a,b) among all 1≤a<b≤n.

SampleInput
2
3
5
SampleOutput
1
2
Note

In the first test case, $$$\mathrm{gcd}(1, 2) = \mathrm{gcd}(2, 3) = \mathrm{gcd}(1, 3) = 1$$$.

In the second test case, $$$2$$$ is the maximum possible value, corresponding to $$$\mathrm{gcd}(2, 4)$$$.

Submit
题目统计信息详细
总AC数12
通过人数12
尝试人数12
总提交量13
AC率92.31%
AC该题后可以添加标签
贴完标签可以获得20ACB。
并且可以获得本题所有提交代码查看权限。
点击标题可以显示标签。
如果你还没认真思考过这题,请不要查看标签
如果您已经通过了该题,请务为该题贴上标签

T^T Online Judge

[BUG反馈] [FAQ] [闽ICP备17026590号-1]
当前版本:3.24 系统时间: