Equation

TimeLimit:3000MS  MemoryLimit:256MB
64-bit integer IO format:%I64d
未提交 | 登录后收藏
Problem Description

Let's call a positive integer composite if it has at least one divisor other than 1 and itself. For example:


the following numbers are composite: 1024, 4, 6, 9;

the following numbers are not composite: 13, 1, 2, 3, 37.

You are given a positive integer n. Find two composite integers a,b such that a−b=n.


It can be proven that solution always exists.


Input

The input contains one integer n (1≤n≤10^7): the given integer.

Output

Print two composite integers a,b (2≤a,b≤10^9,a−b=n).


It can be proven, that solution always exists.


If there are several possible solutions, you can print any.


SampleInput 1
1
SampleOutput 1
9 8
SampleInput 2
512
SampleOutput 2
4608 4096
Submit
题目统计信息详细
总AC数13
通过人数13
尝试人数13
总提交量20
AC率65.00%
AC该题后可以添加标签
贴完标签可以获得20ACB。
并且可以获得本题所有提交代码查看权限。
点击标题可以显示标签。
如果你还没认真思考过这题,请不要查看标签
如果您已经通过了该题,请务为该题贴上标签

T^T Online Judge

[BUG反馈] [FAQ] [闽ICP备17026590号-1]
当前版本:3.24 系统时间: