Set1

TimeLimit:5000MS  MemoryLimit:524288KB
64-bit integer IO format:%I64d
未提交 | 登录后收藏
Problem Description
You are given a set $S=\{1..n\}$. It guarantees that n is odd. You have to do the following operations until there is only $1$ element in the set:

Firstly, delete the smallest element of $S$. Then randomly delete another element from $S$.

For each $i \in [1,n]$, determine the probability of $i$ being left in the $S$.

It can be shown that the answers can be represented by $\frac{P}{Q}$, where $P$ and $Q$ are coprime integers, and print the value of $P \times Q^{-1} \space mod $ $\space 998244353.$
Input
The first line containing the only integer $T(T \in [1,40])$ denoting the number of test cases.

For each test case:

The first line contains a integer $n$ .

It guarantees that: $ \sum n \in [1,5 \times 10^6]$.
Output
For each test case, you should output $n$ integers, $i$-th of them means the probability of $i$ being left in the $S$.
SampleInput
1
3
SampleOutput
0 499122177 499122177
Submit
题目统计信息详细
总AC数0
通过人数0
尝试人数0
总提交量0
AC率0.00%
AC该题后可以添加标签
贴完标签可以获得20ACB。
并且可以获得本题所有提交代码查看权限。
点击标题可以显示标签。
如果你还没认真思考过这题,请不要查看标签
如果您已经通过了该题,请务为该题贴上标签

T^T Online Judge

[BUG反馈] [FAQ] [闽ICP备17026590号-1]
当前版本:3.24 系统时间: