Tetrahedron

TimeLimit:4500MS  MemoryLimit:524288KB
64-bit integer IO format:%I64d
未提交 | 登录后收藏
Problem Description
Generate three integers $a$, $b$, and $c$ in $[1,n]$ with equal probability independently, and use them as the three right-angle side length of a right-angled tetrahedron. Find the expectation of the reciprocal square of the distance from the right-angle apex to the slope (Euclidean distance).

For each test case, output a line containing the answer mod $998244353$.

Input
In the first line, you should read an integer $T$ denoting the number of test cases.

In every test case, the only line will include an integer $n$.

It is guaranteed that $T$ is no larger than $2 \times 10^6$ and $n$ is no larger than $6 \times 10^6$.
Output
For each test case, output the only line containing just one integer denoting the answer mod $998244353$.
SampleInput
3
1
2
3
SampleOutput
3
124780546
194103070
Submit
题目统计信息详细
总AC数3
通过人数3
尝试人数3
总提交量6
AC率50.00%
AC该题后可以添加标签
贴完标签可以获得20ACB。
并且可以获得本题所有提交代码查看权限。
点击标题可以显示标签。
如果你还没认真思考过这题,请不要查看标签
如果您已经通过了该题,请务为该题贴上标签

T^T Online Judge

[BUG反馈] [FAQ] [闽ICP备17026590号-1]
当前版本:3.24 系统时间: