Palindrome Function

TimeLimit:4000MS  MemoryLimit:256000KB
64-bit integer IO format:%I64d
未提交 | 登录后收藏
Problem Description

As we all know,a palindrome number is the number which reads the same backward as forward,such as 666 or 747.Some numbers are not the palindrome numbers in decimal form,but in other base,they may become the palindrome number.Like 288,it’s not a palindrome number under 10-base.But if we convert it to 17-base number,it’s GG,which becomes a palindrome number.So we define an interesting function f(n,k) as follow:
f(n,k)=k if n is a palindrome number under k-base.
Otherwise f(n,k)=1.
Now given you 4 integers L,R,l,r,you need to caluclate the mathematics expression Ri=Lrj=lf(i,j) .
When representing the k-base(k>10) number,we need to use A to represent 10,B to represent 11,C to repesent 12 and so on.The biggest number is Z(35),so we only discuss about the situation at most 36-base number.

Input

The first line consists of an integer T,which denotes the number of test cases.
In the following T lines,each line consists of 4 integers L,R,l,r.
(1T105,1LR109,2lr36)


Output
For each test case, output the answer in the form of “Case #i: ans” in a seperate line.
SampleInput
3
1 1 2 36
1 982180 10 10
496690841 524639270 5 20
SampleOutput
Case #1: 665
Case #2: 1000000
Case #3: 447525746
Submit
题目统计信息详细
总AC数0
通过人数0
尝试人数0
总提交量0
AC率0.00%
AC该题后可以添加标签
贴完标签可以获得20ACB。
并且可以获得本题所有提交代码查看权限。
点击标题可以显示标签。
如果你还没认真思考过这题,请不要查看标签
如果您已经通过了该题,请务为该题贴上标签

T^T Online Judge

[BUG反馈] [FAQ] [闽ICP备17026590号-1]
当前版本:3.24 系统时间: