AVL Tree

TimeLimit:1000MS  MemoryLimit:32768KB
64-bit integer IO format:%I64d
未提交 | 登录后收藏
Problem Description
An AVL tree is a kind of balanced binary search tree. Named after their inventors, Adelson-Velskii and Landis, they were the first dynamically balanced trees to be proposed. Like red-black trees, they are not perfectly balanced, but pairs of sub-trees differ in height by at most 1, maintaining an O(logn) search time. Addition and deletion operations also take O(logn) time.
Definition of an AVL tree
An AVL tree is a binary search tree which has the following properties:
1. The sub-trees of every node differ in height by at most one.
2. Every sub-tree is an AVL tree.

Balance requirement for an AVL tree: the left and right sub-trees differ by at most 1 in height.An AVL tree of n nodes can have different height.
For example, n = 7:

So the maximal height of the AVL Tree with 7 nodes is 3.
Given n,the number of vertices, you are to calculate the maximal hight of the AVL tree with n nodes.
Input
Input file contains multiple test cases. Each line of the input is an integer n(0<n<=10^9).
A line with a zero ends the input.
Output
An integer each line representing the maximal height of the AVL tree with n nodes.
SampleInput
1
2
0
SampleOutput
0
1
Submit
题目统计信息详细
总AC数1
通过人数1
尝试人数3
总提交量8
AC率12.50%
AC该题后可以添加标签
贴完标签可以获得20ACB。
并且可以获得本题所有提交代码查看权限。
点击标题可以显示标签。
如果你还没认真思考过这题,请不要查看标签
如果您已经通过了该题,请务为该题贴上标签

T^T Online Judge

[BUG反馈] [FAQ] [闽ICP备17026590号-1]
当前版本:3.24 系统时间: