All Kill

TimeLimit:4000MS  MemoryLimit:524288KB
64-bit integer IO format:%I64d
未提交 | 登录后收藏
Problem Description
Give nonnegative integers $x_{1…n}$ which are less than $32677$, calculate $y_{i,j}=x_i\times x_j\mod32677$. HazelFan wants to know how many sextuples $(a,b,c,d,e,f)$ are there, satisfies $\gcd(y_{a,b},y_{c,d})=\gcd(y_{c,d},y_{e,f})=\gcd(y_{e,f},y_{a,b})=1$, module $2^{30}$.
Input
The first line contains a positive integer $T(1\leq T\leq5)$, denoting the number of test cases.
For each test case:
The first line contains a positive integer $n(1\leq n\leq2\times10^5)$.
The second line contains $n$ nonnegative integers $x_{1...n}(0\leq x_i<32677)$.
Output
For each test case:
A single line contains a nonnegative integer, denoting the answer.
SampleInput
2
1
1
5
1 2 3 4 5
SampleOutput
1
1087
Submit
题目统计信息详细
总AC数0
通过人数0
尝试人数0
总提交量0
AC率0.00%
AC该题后可以添加标签
贴完标签可以获得20ACB。
并且可以获得本题所有提交代码查看权限。
点击标题可以显示标签。
如果你还没认真思考过这题,请不要查看标签
如果您已经通过了该题,请务为该题贴上标签
出处

T^T Online Judge

[BUG反馈] [FAQ] [闽ICP备17026590号-1]
当前版本:3.24 系统时间: