Rikka with Match

TimeLimit:6500MS  MemoryLimit:262144KB
64-bit integer IO format:%I64d
未提交 | 登录后收藏
Problem Description
As we know, Rikka is poor at math. Yuta is worrying about this situation, so he gives Rikka some math tasks to practice. There is one of them:

Yuta has an undirected connected graph $G=\langle V,E \rangle$ with $n$ nodes and $n-1$ edges. Yuta can choose some edges in $E$ and remove them. It is clear that Yuta has $2^{n-1}$ different ways to remove.

Now, Yuta want to know the number of ways to remove the edges which make the maximum matching size of the remaining graph $G’$ is divisible by $m$.

It is too difficult for Rikka. Can you help her?  

An edge set $S$ is a match of $G=\langle V,E \rangle$ if and only if each nodes in $V$ connects to at most one edge in $S$. The maximum matching of graph $G$ is defined as the match of $G$ with the largest size.
Input
The first line contains a number $t(1 \leq t \leq 100)$, the number of the testcases. And there are no more than $3$ testcases with $n > 1000$.

For each testcase, the first line contains two numbers $n,m(1 \leq n \leq 5 \times 10^4,1 \leq m \leq 200)$.

Then $n-1$ lines follow, each line contains two numbers $u,v$ which describes an edge in $G$.
Output
For each testcase, print a single line with a single number -- the answer modulo $998244353$.
SampleInput
1
4 2
1 2
2 3
3 4
SampleOutput
3
Submit
题目统计信息详细
总AC数0
通过人数0
尝试人数0
总提交量0
AC率0.00%
AC该题后可以添加标签
贴完标签可以获得20ACB。
并且可以获得本题所有提交代码查看权限。
点击标题可以显示标签。
如果你还没认真思考过这题,请不要查看标签
如果您已经通过了该题,请务为该题贴上标签
出处

T^T Online Judge

[BUG反馈] [FAQ] [闽ICP备17026590号-1]
当前版本:3.24 系统时间: