Kanade's sum

TimeLimit:2000MS  MemoryLimit:65536KB
64-bit integer IO format:%I64d
未提交 | 登录后收藏
Problem Description
Give you an array $A[1..n] $of length $n$.

Let $f(l,r,k)$ be the k-th largest element of $A[l..r]$.

Specially , $f(l,r,k)=0$ if $r-l+1<k$.

Give you $k$ , you need to calculate $\sum_{l=1}^{n}\sum_{r=l}^{n}f(l,r,k)$

There are T test cases.

$1\leq T\leq 10$

$k\leq min(n,80)$

$A[1..n] ~is~a~permutation~of~[1..n]$

$\sum n\leq 5*10^5$
Input
There is only one integer T on first line.

For each test case,there are only two integers $n$,$k$ on first line,and the second line consists of $n$ integers which means the array $A[1..n]$
Output
For each test case,output an integer, which means the answer.
SampleInput
1

5 2

1 2 3 4 5
SampleOutput
30
Submit
题目统计信息详细
总AC数3
通过人数3
尝试人数3
总提交量4
AC率75.00%
AC该题后可以添加标签
贴完标签可以获得20ACB。
并且可以获得本题所有提交代码查看权限。
点击标题可以显示标签。
如果你还没认真思考过这题,请不要查看标签
如果您已经通过了该题,请务为该题贴上标签

T^T Online Judge

[BUG反馈] [FAQ] [闽ICP备17026590号-1]
当前版本:3.24 系统时间: