Maximum Sequence

TimeLimit:2000MS  MemoryLimit:32768KB
64-bit integer IO format:%I64d
未提交 | 登录后收藏
Problem Description
Steph is extremely obsessed with “sequence problems” that are usually seen on magazines: Given the sequence 11, 23, 30, 35, what is the next number? Steph always finds them too easy for such a genius like himself until one day Klay comes up with a problem and ask him about it.

Given two integer sequences {ai} and {bi} with the same length n, you are to find the next n numbers of {ai}: $a_{n+1}…a_{2n}$. Just like always, there are some restrictions on $a_{n+1}…a_{2n}$: for each number $a_i$, you must choose a number $b_k$ from {bi}, and it must satisfy $a_i$≤max{$a_j$-j│$b_k$≤j<i}, and any $b_k$ can’t be chosen more than once. Apparently, there are a great many possibilities, so you are required to find max{$\sum_{n+1}^{2n}a_i$} modulo $10^9$+7 .

Now Steph finds it too hard to solve the problem, please help him.
Input
The input contains no more than 20 test cases.
For each test case, the first line consists of one integer n. The next line consists of n integers representing {ai}. And the third line consists of n integers representing {bi}.
1≤n≤250000, n≤a_i≤1500000, 1≤b_i≤n.
Output
For each test case, print the answer on one line: max{$\sum_{n+1}^{2n}a_i$} modulo $10^9$+7。
SampleInput
4
8 11 8 5
3 1 4 2
SampleOutput
27
 Hint For the first sample: 1. Choose 2 from {bi}, then a_2…a_4 are available for a_5, and you can let a_5=a_2-2=9; 2. Choose 1 from {bi}, then a_1…a_5 are available for a_6, and you can let a_6=a_2-2=9;
Submit
题目统计信息详细
总AC数6
通过人数6
尝试人数8
总提交量13
AC率46.15%
AC该题后可以添加标签
贴完标签可以获得20ACB。
并且可以获得本题所有提交代码查看权限。
点击标题可以显示标签。
如果你还没认真思考过这题,请不要查看标签
如果您已经通过了该题,请务为该题贴上标签

T^T Online Judge

[BUG反馈] [FAQ] [闽ICP备17026590号-1]
当前版本:3.24 系统时间: