Watering Flowers

TimeLimit:2000MS  MemoryLimit:256MB
64-bit integer IO format:%I64d
未提交 | 登录后收藏
Problem Description

A flowerbed has many flowers and two fountains.

You can adjust the water pressure and set any values r1(r1 ≥ 0) and r2(r2 ≥ 0), giving the distances at which the water is spread from the first and second fountain respectively. You have to set such r1 and r2 that all the flowers are watered, that is, for each flower, the distance between the flower and the first fountain doesn't exceed r1, or the distance to the second fountain doesn't exceed r2. It's OK if some flowers are watered by both fountains.

You need to decrease the amount of water you need, that is set such r1 and r2 that all the flowers are watered and the r12 + r22 is minimum possible. Find this minimum value.

Input

The first line of the input contains integers n, x1, y1, x2, y2 (1 ≤ n ≤ 2000,  - 107 ≤ x1, y1, x2, y2 ≤ 107) — the number of flowers, the coordinates of the first and the second fountain.

Next follow n lines. The i-th of these lines contains integers xi and yi ( - 107 ≤ xi, yi ≤ 107) — the coordinates of the i-th flower.

It is guaranteed that all n + 2 points in the input are distinct.

Output

Print the minimum possible value r12 + r22. Note, that in this problem optimal answer is always integer.

SampleInput 1
2 -1 0 5 3
0 2
5 2
SampleOutput 1
6
SampleInput 2
4 0 0 5 0
9 4
8 3
-1 0
1 4
SampleOutput 2
33
Note

The first sample is (r12 = 5, r22 = 1): The second sample is (r12 = 1, r22 = 32):

Submit
题目统计信息详细
总AC数8
通过人数7
尝试人数10
总提交量44
AC率15.91%
AC该题后可以添加标签
贴完标签可以获得20ACB。
并且可以获得本题所有提交代码查看权限。
点击标题可以显示标签。
如果你还没认真思考过这题,请不要查看标签
如果您已经通过了该题,请务为该题贴上标签

T^T Online Judge

[BUG反馈] [FAQ] [闽ICP备17026590号-1]
当前版本:3.24 系统时间: