Weakness and Poorness

TimeLimit: 2000ms  MemoryLimit:262144KB
64-bit integer IO format:%I64d
未提交 | 登录后收藏
Problem Description

You are given a sequence of n integers a1, a2, ..., an.

Determine a real number x such that the weakness of the sequence a1 - x, a2 - x, ..., an - x is as small as possible.

The weakness of a sequence is defined as the maximum value of the poorness over all segments (contiguous subsequences) of a sequence.

The poorness of a segment is defined as the absolute value of sum of the elements of segment.

给出一个n个整数a1,a2,...,an的序列。

求实数x使得新序列a1-x,a2-x,...,an-x的脆弱度尽可能小。

序列的脆弱度定义为序列的所有片段(连续子序列)的不良度的最大值。

子序列的不良度被定义为子序列的元素的和的绝对值。

Input

The first line contains one integer n (1 ≤ n ≤ 200 000), the length of a sequence.

The second line contains n integers a1, a2, ..., an (|ai| ≤ 10 000).

Output

Output a real number denoting the minimum possible weakness of a1 - x, a2 - x, ..., an - x. Your answer will be considered correct if its relative or absolute error doesn't exceed 10 - 6.

SampleInput 1
3
1 2 3
SampleOutput 1
1.000000000000000
SampleInput 2
4
1 2 3 4
SampleOutput 2
2.000000000000000
SampleInput 3
10
1 10 2 9 3 8 4 7 5 6
SampleOutput 3
4.500000000000000
Note
For the first case, the optimal value of x is 2 so the sequence becomes  - 1, 0, 1 and the max poorness occurs at the segment "-1" or segment "1". The poorness value (answer) equals to 1 in this case.

For the second sample the optimal value of x is 2.5 so the sequence becomes  - 1.5,  - 0.5, 0.5, 1.5 and the max poorness occurs on segment "-1.5 -0.5" or "0.5 1.5". The poorness value (answer) equals to 2 in this case.
Submit
题目统计信息详细
总AC数78
通过人数56
尝试人数59
总提交量165
AC率33.94%
AC该题后可以添加标签
贴完标签可以获得20ACB。
并且可以获得本题所有提交代码查看权限。
点击标题可以显示标签。
如果你还没认真思考过这题,请不要查看标签
如果您已经通过了该题,请务为该题贴上标签

T^T Online Judge

[BUG反馈] [FAQ] [闽ICP备17026590号-1]
当前版本:3.24 系统时间: